Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 2031-2047, 2021.
Article in English | WPRIM | ID: wpr-888849

ABSTRACT

Post-traumatic stress disorder (PTSD) is a psychiatric disease that seriously affects brain function. Currently, selective serotonin reuptake inhibitors (SSRIs) are used to treat PTSD clinically but have decreased efficiency and increased side effects. In this study, nasal cannabidiol inclusion complex temperature-sensitive hydrogels (CBD TSGs) were prepared and evaluated to treat PTSD. Mice model of PTSD was established with conditional fear box. CBD TSGs could significantly improve the spontaneous behavior, exploratory spirit and alleviate tension in open field box, relieve anxiety and tension in elevated plus maze, and reduce the freezing time. Hematoxylin and eosin and c-FOS immunohistochemistry slides showed that the main injured brain areas in PTSD were the prefrontal cortex, amygdala, and hippocampus CA1. CBD TSGs could reduce the level of tumor necrosis factor-

2.
Acta Pharmaceutica Sinica B ; (6): 1931-1946, 2021.
Article in English | WPRIM | ID: wpr-888843

ABSTRACT

We herein describe AncPhore, a versatile tool for drug discovery, which is characterized by pharmacophore feature analysis and anchor pharmacophore (

3.
Acta Pharmaceutica Sinica B ; (6): 1541-1554, 2021.
Article in English | WPRIM | ID: wpr-888819

ABSTRACT

Obesity and its associated complications are highly related to a current public health crisis around the world. A growing body of evidence has indicated that G-protein coupled bile acid (BA) receptor TGR5 (also known as Gpbar-1) is a potential drug target to treat obesity and associated metabolic disorders. We have identified notoginsenoside Ft1 (Ft1) from

4.
Acta Pharmaceutica Sinica B ; (6): 421-432, 2019.
Article in English | WPRIM | ID: wpr-774977

ABSTRACT

Prodrug nanoassemblies, which can refrain from large excipients, achieve higher drug loading and control drug release, have been placed as the priority in drug delivery system. Reasoning that glutathione (GSH) and reactive oxygen species (ROS) are highly upgraded in tumor tissues which makes them attractive targets for drug delivery system, we designed and synthetized a novel prodrug which utilized mono thioether bond as a linker to bridge linoleic acid (LA) and docetaxel (DTX). This mono thioether-linked conjugates (DTX-S-LA) could self-assemble into nanoparticles without the aid of much excipients. The mono thioether endowed the nanoparticles redox sensitivity resulting in specific release at the tumor tissue. Our studies demonstrated that the nanoassemblies had uniform particle size, high stability and fast release behavior. DTX-S-LA nanoassemblies outperformed DTX solution in pharmacokinetic profiles for it had longer circulation time and higher area under curve (AUC). Compared with DTX solution, the redox dual-responsive nanoassemblies had comparable cytotoxic activity. Besides, the antitumor efficacy was evaluated in mice bearing 4T1 xenograft. It turned out this nanoassemblies could enhance anticancer efficacy by increasing the dose because of higher tolerance. Overall, these results indicated that the redox sensitivity nanoassemblies may have a great potential to cancer therapy.

5.
Acta Pharmaceutica Sinica B ; (6): 223-230, 2015.
Article in English | WPRIM | ID: wpr-310032

ABSTRACT

Nucleotide pools in mammalian cells change due to the influence of antitumor drugs, which may help in evaluating the drug effect and understanding the mechanism of drug action. In this study, an ion-pair RP-HPLC method was used for a simple, sensitive and simultaneous determination of the levels of 12 nucleotides in mammalian cells treated with antibiotic antitumor drugs (daunorubicin, epirubicin and dactinomycin D). Through the use of this targeted metabolomics approach to find potential biomarkers, UTP and ATP were verified to be the most appropriate biomarkers. Moreover, a holistic statistical approach was put forward to develop a model which could distinguish 4 categories of drugs with different mechanisms of action. This model can be further validated by evaluating drugs with different mechanisms of action. This targeted metabolomics study may provide a novel approach to predict the mechanism of action of antitumor drugs.

6.
Acta Pharmaceutica Sinica B ; (6): 333-349, 2014.
Article in English | WPRIM | ID: wpr-329716

ABSTRACT

Lipid-based formulations have been an attractive choice among novel drug delivery systems for enhancing the solubility and bioavailability of poorly soluble drugs due to their ability to keep the drug in solubilized state in the gastrointestinal tract. These formulations offer multiple advantages such as reduction in food effect and inter-individual variability, ease of preparation, and the possibility of manufacturing using common excipients available in the market. Despite these advantages, very few products are available in the present market, perhaps due to limited knowledge in the in vitro tests (for prediction of in vivo fate) and lack of understanding of the mechanisms behind pharmacokinetic and biopharmaceutical aspects of lipid formulations after oral administration. The current review aims to provide a detailed understanding of the in vivo processing steps involved after oral administration of lipid formulations, their pharmacokinetic aspects and in vitro in vivo correlation (IVIVC) perspectives. Various pharmacokinetic and biopharmaceutical aspects such as formulation dispersion and lipid digestion, bioavailability enhancement mechanisms, impact of excipients on efflux transporters, and lymphatic transport are discussed with examples. In addition, various IVIVC approaches towards predicting in vivo data from in vitro dispersion/precipitation, in vitro lipolysis and ex vivo permeation studies are also discussed in detail with help of case studies.

SELECTION OF CITATIONS
SEARCH DETAIL